Add like
Add dislike
Add to saved papers

Molecular analysis, biofilm formation, and susceptibility of methicillin-resistant Staphylococcus aureus strains causing community- and health care-associated infections in central venous catheters.

INTRODUCTION: The behavior of methicillin-resistant Staphylococcus aureus (MRSA) isolated from central venous catheter-related infection was evaluated to determine its biofilm potential, antimicrobial resistance, and adhesion genes.

METHODS: A total of 1,156 central venous catheters (CVC) were evaluated to screen for pathogens. Antimicrobial sensitivity, biofilm formation potential, and molecular analysis of MRSA were examined following standard guidelines.

RESULTS: Of the 1,156 samples, 882 (76%) were colonized by bacteria or candida. Among the infected patients, 69% were male and 36% were female with median age of 32 years. Staphylococcus aureus infected 39% (344/882) of CVCs in patients. Of the 59% (208/344) of patients with MRSA, 57% had community acquired MRSA and 43% had hospital acquired MRSA. Linezolid and vancomycin killed 100% of MRSA; resistance levels to fusidic acid, doxycycline, clindamycin, azithromycin, amikacin, trimethoprim-sulfamethoxazole, gentamycin, tobramycin, and ofloxacin were 21%, 42%, 66%, 68%, 72%, 85%, 95%, 97%, and 98% respectively. Strong biofilm was produced by 23% of samples, moderate by 27%, and weak by 50% of MRSA. The presence of adhesion genes, sdrC and sdrD (90%), eno (87%), fnbA (80%), clfA and sdrE (67%), fnbB, sdrD (61%), and cna (51%), in most MRSA samples suggested that the adhesion genes are associated with biofilm synthesis.

CONCLUSIONS: The superbug MRSA is a major cause of CVC-related infection. Antibiotic resistance to major classes of antibiotics and biofilm formation potential enhanced superbug MRSA virulence, leading to complicated infection. MRSA causes infection in hospitals, communities, and livestock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app