Add like
Add dislike
Add to saved papers

Molecular imaging of MMP activity discriminates unstable from stable plaque phenotypes in shear-stress induced murine atherosclerosis.

PURPOSE: As atherosclerotic plaque ruptures are the primary cause of ischaemic events, their preventive identification by imaging remains a clinical challenge. Matrix metalloproteinases (MMP) are involved in plaque progression and destabilisation and are therefore promising targets to characterize rupture-prone unstable plaques. This study aims at evaluating MMP imaging to discriminate unstable from stable plaque phenotypes.

METHODS: ApoE deficient mice (ApoE-/-) on a high cholesterol diet underwent implantation of a tapered cuff around the right common carotid artery (CCA) inducing a highly inflamed atherosclerotic plaque upstream (US) and a more stable plaque phenotype downstream (DS) of the cuff. 8 weeks after surgery, the MMP inhibitor-based photoprobe Cy5.5-AF443 was administered i.v. 3h prior to in situ and ex vivo fluorescence reflectance imaging of the CCAs. Thereafter, CCAs were analysed regarding plaque size, presence of macrophages, and MMP-2 and MMP-9 concentrations by immunohistochemistry and ELISA.

RESULTS: We found a significantly higher uptake of Cy5.5-AF443 in US as compared to DS plaques in situ (1.29 vs. 1.06 plaque-to-background ratio; p<0.001), which was confirmed by ex vivo measurements. Immunohistochemistry revealed a higher presence of macrophages, MMP-2 and MMP-9 in US compared to DS plaques. Accordingly, MMP-2 concentrations were significantly higher in US plaques (47.2±7.6 vs. 29.6±4.6 ng/mg; p<0.05).

CONCLUSIONS: In the ApoE-/- cuff model MMP-2 and MMP-9 activities are significantly higher in upstream low shear stress-induced unstable atherosclerotic plaques as compared to downstream more stable plaque phenotypes. MMP inhibitor-based fluorescence molecular imaging allows visualization of these differences in shear stress-induced atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app