Add like
Add dislike
Add to saved papers

Enhanced Light-Matter Interactions in Self-Assembled Plasmonic Nanoparticles on 2D Semiconductors.

Small 2018 October 11
Two-dimensional (2D) transition-metal dichalcogenide (TMD) monolayers of versatile material library are spotlighted for numerous unexplored research fields. While monolayer TMDs exhibit an efficient excitonic emission, the weak light absorption arising from their low dimensionality limits potential applications. To enhance the light-matter interactions of TMDs, while various plasmonic hybridization methods have been intensively studied, controlling plasmonic nanostructures via self-assembly processes remains challenging. Herein, strong light-matter interactions are reported in plasmonic Ag nanoparticles (NPs) hybridized on TMDs via an aging-based self-assembly process at room temperature. This hybridization is implemented by transferring MoS2 monolayers grown via chemical vapor deposition onto thin-spacer-covered Ag films. After a few weeks of aging in a vacuum desiccator, the Ag atoms in the heterolayered film diffuse to the MoS2 layers through a SiO2 spacer and self-cluster onto MoS2 point defects, resulting in the formation of Ag-NPs with an estimated diameter of ≈50 nm. The photoluminescence intensities for the Ag-NP/MoS2 hybrids are enhanced up to 35-fold compared with bare MoS2 owing to the local field enhancement near the plasmonic Ag-NPs. The localized surface plasmon resonances modes of this hybrid are systematically investigated via numerical simulations and dark-field scattering microscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app