Add like
Add dislike
Add to saved papers

Enhanced immobilization of mercury (II) from desulphurization wastewater by EDTA functionalized graphene oxide nanoparticles.

Environmental Technology 2018 October 11
Graphene oxide (GO) is a new promising nanometer material in a superconductor and wastewater heavy metal ions removal for its functionalized groups. Ethylenediaminetetraacetic acid functionalized graphene oxide complexes (EDTA-GO) was produced by a realizable silanization chemical reaction. Characteristics of Hg(II) removal in desulphurization wastewater was also under investigation. The chemical composition and microstructures of the EDTA-GO adsorbents were characterized by X-ray photoelectron spectroscopy (XPS), Transmission electron microscope (TEM), Scanning Electron Microscopy (SEM) analyses. To investigate the performance of EDTA-GO adsorbents on adsorption of Hg(II) in wastewater of wet flue gas desulphurization (WFGD), experiments were performed to optimize the main influence factors such as reaction temperatures (35-70°C), pH values(2-13), contact time (0-120 min), initial Hg(II) concentrations(800 ug/L) and adsorbent doses (20-50 mg/L). The maximum uptake removal efficiency (97.14%) was achieved under the optimal conditions at the pH of 7, the temperature of 70°C, the Hg(II) concentration of 1200 μg/L and the EDTA-GO dose of 40 mg/L. The kinetic data fitting results were well consistent with the pseudo-second-order model (R2  = 0.99997) and a spontaneous and endothermic adsorption reaction was elaborated by thermodynamics studies (ΔG < 0, ΔH > 0, ΔS > 0). The experiments of recycled adsorbents by HCl generation were carried out to obtain the performance of the reused EDTA-GO adsorbent, the fourth regenerative adsorption efficiency still maintained 80.4%, which indicated that excellent potential application in desulphurization wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app