Add like
Add dislike
Add to saved papers

A voltammetric assay for microRNA-25 based on the use of amino-functionalized graphene quantum dots and ss- and ds-DNAs as gene probes.

Mikrochimica Acta 2018 October 10
The authors describe a DNA based voltammetric assay for the cancer biomarker microRNA-25. A glassy carbon electrode (GCE) was modified with amino-functionalized graphene quantum dots and used as an amplifier of electrochemical signals. p-Biphenol is introduced as a new electroactive probe with a fairly low working potential of 0.3 V (vs. Ag/AgCl). The stages of fabricating the electrode were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. ss-Probe DNA was immobilized on the modified GCE and then exposed to a sample containing microRNA-25. The results indicated that the electrode can distinguish complementary microRNA-25 from a single-base mismatch. The increase in the electrochemical response of PBP and the positive shift in the potential peak indicate that PBP is intercalated between two strands. Under optimized experimental conditions, the current of the electrode increases linearly with the logarithm of the microRNA-25 concentration in the range from 0.3 nM to 1.0 μM, and the detection limit is 95.0 pM. The assay was successfully employed to the determination of microRNA-25 in spiked human plasma. Graphical abstract A novel electrochemical nanogenosensor is introduced for simple and sensitive determination of microRNA-25, as a biomarker, based on amino-functionalized graphene quantum dots (as a surface modifier) and p-biphenol (as an electroactive label).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app