Add like
Add dislike
Add to saved papers

Efficient and Sensitive Electrically Small Rectenna for Ultra-Low Power RF Energy Harvesting.

Scientific Reports 2018 October 10
A new electrically small antenna with size ka = 0.415 is presented, fabricated and measured in this work. This is intrinsically matched to 50 Ω, has omni-directional and linear-polarized radiation pattern in the horizontal plane with maximum directivity of 1.75 dBi and simulated radiation efficiency of 93%. The antenna in combination with a low-complex and co-planar rectifier with one single diode forms a high efficient and sensitive electrically small rectenna with ka = 0.53 at 868 MHz (UHF RFID-band in Europe). The latter has measured efficiency 22.5% for -19 dBm power input and sensitivity of -44 dBm (or equivalently 0.00028 μW/cm2 power density), while at 2.25 μW/cm2 is able to supply continuously, i.e., without a boost converter or use of any energy tank, a small electrical device with 118 μW. In order to increase the dc output voltage and the delivered dc power to the load for lower power density levels, rectenna-array configuration is exploited. Application to batteryless, backscatter wireless sensor node powering is discussed. Specifically, for a power density of 0.1237 μW/cm2 the RF energy harvesting system delivers 172 μW at 2.85 V every 22.5 s.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app