Add like
Add dislike
Add to saved papers

Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C 60 molecules.

Nature Communications 2018 October 10
Few-layer black phosphorus (BP) with an anisotropic two-dimensional (2D)-layered structure shows potential applications in photoelectric conversion and photocatalysis, but is easily oxidized under ambient condition preferentially at its edge sites. Improving the ambient stability of BP nanosheets has been fulfilled by chemical functionalization, however this functionalization is typically non-selective. Here we show that edge-selective functionalization of BP nanosheets by covalently bonding stable C60 molecules leads to its significant stability improvement. Owing to the high stability of the hydrophobic C60 molecule, C60 functions as a sacrificial shield and effectively protects BP nanosheets from oxidation under ambient condition. C60 bonding leads to a rapid photoinduced electron transfer from BP to C60 , affording enhanced photoelectrochemical and photocatalytic activities. The selective passivation of the reactive edge sites of BP nanosheets by sacrificial C60 molecules paves the way toward ambient processing and applications of BP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app