Add like
Add dislike
Add to saved papers

Octopaminergic Signaling Mediates Neural Regulation of Innate Immunity in Caenorhabditis elegans.

MBio 2018 October 10
Upon pathogen infection, the nervous system regulates innate immunity to confer coordinated protection to the host. However, the precise mechanisms of such regulation remain unclear. Previous studies have demonstrated that OCTR-1, a putative G protein-coupled receptor for catecholamine, functions in the sensory neurons designated "ASH" to suppress innate immune responses in Caenorhabditis elegans It is unknown what molecules act as OCTR-1 ligands in the neural immune regulatory circuit. Here we identify neurotransmitter octopamine (OA) as an endogenous ligand for OCTR-1 in immune regulation and show that the OA-producing RIC neurons function in the OCTR-1 neural circuit to suppress innate immunity. RIC neurons are deactivated in the presence of pathogens but transiently activated by nonpathogenic bacteria. Our data support a model whereby an octopaminergic immunoinhibitory pathway is tonically active under normal conditions to maintain immunological homeostasis or suppress unwanted innate immune responses but downregulated upon pathogen infection to allow enhanced innate immunity. As excessive innate immune responses have been linked to a myriad of human health concerns, our study could potentially benefit the development of more-effective treatments for innate immune disorders. IMPORTANCE Insufficient or excessive immune responses to pathogen infection are major causes of disease. Increasing evidence indicates that the nervous system regulates the immune system to help maintain immunological homeostasis. However, the precise mechanisms of this regulation are largely unknown. Here we show the existence of an octopaminergic immunoinhibitory pathway in Caenorhabditis elegans Our study results indicate that this pathway is tonically active under normal conditions to maintain immunological homeostasis or suppress unwanted innate immune responses but downregulated upon pathogen infection to allow enhanced innate immunity. As excessive innate immune responses have been linked to human health conditions such as Crohn's disease, rheumatoid arthritis, atherosclerosis, diabetes, and Alzheimer's disease, elucidating octopaminergic neural regulation of innate immunity could be helpful in the development of new treatments for innate immune diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app