Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Highly disordered histone H1-DNA model complexes and their condensates.

Disordered proteins play an essential role in a wide variety of biological processes, and are often posttranslationally modified. One such protein is histone H1; its highly disordered C-terminal tail (CH1) condenses internucleosomal linker DNA in chromatin in a way that is still poorly understood. Moreover, CH1 is phosphorylated in a cell cycle-dependent manner that correlates with changes in the chromatin condensation level. Here we present a model system that recapitulates key aspects of the in vivo process, and also allows a detailed structural and biophysical analysis of the stages before and after condensation. CH1 remains disordered in the DNA-bound state, despite its nanomolar affinity. Phase-separated droplets (coacervates) form, containing higher-order assemblies of CH1/DNA complexes. Phosphorylation at three serine residues, spaced along the length of the tail, has little effect on the local properties of the condensate. However, it dramatically alters higher-order structure in the coacervate and reduces partitioning to the coacervate phase. These observations show that disordered proteins can bind tightly to DNA without a disorder-to-order transition. Importantly, they also provide mechanistic insights into how higher-order structures can be exquisitely sensitive to perturbation by posttranslational modifications, thus broadening the repertoire of mechanisms that might regulate chromatin and other macromolecular assemblies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app