Add like
Add dislike
Add to saved papers

Hyperbaric oxygen boosts long noncoding RNA MALAT1 exosome secretion to suppress microRNA-92a expression in therapeutic angiogenesis.

BACKGROUND: Hyperbaric oxygen (HBO) could improve wound healing by enhancement of angiogenesis. The effect of HBO on metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a proangiogenic long noncoding RNA, and on endothelial cell-derived exosome is unknown. We aim to investigate both whether MALAT1 is altered in human coronary artery endothelial cells (HCAECs)-derived exosomes in response to HBO as well as the molecular regulatory mechanisms of MALAT1 in HCAECs under HBO treatment.

METHODS AND RESULTS: HCAECs were cultured and HBO was applied at 2.5 atmosphere absolute (ATA) in a hyperbaric chamber. Exosomes were extracted from culture media. A rat model of hind-limb ischemia was performed by ligation of the right femoral artery. HBO at 2.5 ATA significantly increased MALAT1 expression in HCAECs and HCAECs-derived exosomes. MALAT1 suppressed miR-92a expression in HCAEC-derived exosomes under HBO. Silencing MALAT1 by MALAT1 siRNA significantly inhibited KLF2 mRNA expression induced by HBO, as did MiR-92a. MiR-92a significantly decreased KLF2 luciferase activity in HCAECs under HBO. HBO and HBO-induced exosomes significantly increased cell proliferation and the capillary-like network formation of HCAECs. MALAT1 siRNA and miR-92a overexpression significantly attenuated the cell proliferation and tube formation caused by HBO-induced exosome. HBO and HBO-induced exosomes significantly improved neovascularization in a rat model of hind-limb ischemia.

CONCLUSIONS: HBO upregulates MALAT1 to suppress miR-92a expression and counteracts the inhibitory effect of miR-92a on KLF2 expression in HCAECs to enhance neovascularization. HBO-induced derivation of exosomes from HCAECs enhances angiogenesis. Exosomes containing MALAT1 might serve as a valuable therapeutic tool for neovascularization by HBO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app