Add like
Add dislike
Add to saved papers

Compound Molecular Logic in Accessing the Active Site of Mycobacterium tuberculosis Protein Tyrosine Phosphatase B.

Protein tyrosine phosphatase B (PtpB) from Mycobacterium tuberculosis (Mtb) extends the bacteria's survival in hosts and hence is a potential target for Mtb-specific drugs. To study how Mtb-specific sequence insertions in PtpB may regulate access to its active site through large-amplitude conformational changes, we performed free-energy calculations using an all-atom explicit solvent model. Corroborated by biochemical assays, the results show that PtpB's active site is controlled via an "either/or" compound conformational gating mechanism, an unexpected discovery that Mtb has evolved to bestow a single enzyme with such intricate logical operations. In addition to providing unprecedented insights for its active-site surroundings, the findings also suggest new ways of inactivating PtpB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app