Add like
Add dislike
Add to saved papers

Sediment characteristics influence the fertilisation success of the corals Acropora tenuis and Acropora millepora.

Elevated suspended sediment concentrations (SSCs) often impact coral fertilisation success, but sediment composition can influence effect thresholds, which is problematic for accurately predicting risk. Here, we derived concentration-response thresholds and cause-effect pathways for SSCs comprising a range of realistic mineral and organic compositions on coral fertilisation success. Effect concentration thresholds (EC10 : 10% fertilisation inhibition) varied markedly, with fertilisation highly sensitive to inshore organic-clay rich sediments and bentonite clay at <5 mg L-1 . Mineral clays and organic matter within these sediments likely promoted flocculation of the coral sperm, which in turn reduced fertilisation. In contrast, sediments lacking these properties bound less sperm, leading to higher SSC thresholds for coral fertilisation (EC10  > 40 mg L-1 ). The effect thresholds for relevant sediment types were combined with in situ turbidity data from locations near dredging operations to assess the risks posed by dredging to coral fertilisation at these locations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app