Add like
Add dislike
Add to saved papers

Electromechanics of polarized cell growth.

Bio Systems 2018 October 7
One of the most challenging questions in cell and developmental biology is how molecular signals are translated into mechanical forces that ultimately drive cell growth and motility. Despite an impressive body of literature demonstrating the importance of cytoskeletal and motor proteins as well as osmotic stresses for cell developmental mechanics, a host of dissenting evidence strongly suggests that these factors per se cannot explain growth mechanics even at the level of a single tip-growing cell. The present study addresses this issue by exploring fundamental interrelations between electrical and mechanical fields operating in cells. In the first instance, we employ a simplified but instructive model of a quiescent cell to demonstrate that even in a quasi-equilibrium state, ion transport processes are conditioned principally by mechanical tenets. Then we inquire into the electromechanical conjugacy in growing pollen tubes as biologically relevant and physically tractable developmental systems owing to their extensively characterized growth-associated ionic fluxes and strikingly polarized growth and morphology. A comprehensive analysis of the multifold stress pattern in the growing apices of pollen tubes suggests that tip-focused ionic fluxes passing through the polyelectrolyte-rich apical cytoplasm give rise to electrokinetic flows that actualize otherwise isotropic intracellular turgor into anisotropic stress field. The stress anisotropy can be then imparted from the apical cytoplasm to the abutting frontal cell wall to induce its local extension and directional cell growth. Converging lines of evidence explored in the concluding sections attest that tip-focused ionic fluxes and associated interfacial transport phenomena are not specific for pollen tubes but are also employed by a vast variety of algal, plant, fungal and animal cells, rendering their cytoplasmic stress fields essentially anisotropic and ultimately instrumental in cell shaping, growth and motility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app