Add like
Add dislike
Add to saved papers

Polyanthraquinone-Triazine-A Promising Anode Material for High-Energy Lithium-Ion Batteries.

A novel covalent organic framework polymer material that bears conjugated anthraquinone and triazine units in its skeleton has been prepared via a facile one-pot condensation reaction and employed as an anode material for Li-ion batteries. The conjugated units consist of C═N groups, C═O groups, and benzene groups, which enable a 17-electron redox reaction with Li per repeating unit and bring a theoretical specific capacity of 1450 mA h g-1 . The polymer also shows a large specific surface area and a hierarchically porous structure to trigger interfacial Li storage and contribute to an additional capacity. The highly conductive conjugated polymer skeleton enables fast electron transport to facilitate the Li storage. In this way, the polymer electrode shows a large specific capacity and favorable cycling and rate performance, making it an appealing anode choice for the next-generation high-energy batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app