Add like
Add dislike
Add to saved papers

Do tall tree species have higher relative stiffness than shorter species?

PREMISE OF THE STUDY: In 1757 Leonhard Euler demonstrated that to avoid bending tall columns needed to be stiffer but not stronger than shorter columns of equal diameter and material density. Many researchers have concluded that trees have a fixed stiffness to basic density ratio, and therefore, trees adjust for increasing height by adding mass to adjust stem form. But the wood science literature points to considerable variance in stiffness with respect to green wood density.

METHODS: Using the vast global repository of green wood mechanical properties, we compared relative stiffness and relative strength between taller and shorter species. For North American trees, we examined stem moisture distribution.

KEY RESULTS: For all regions of the world, taller species on average possessed greater stiffness, but not strength, than shorter species of equal basic specific gravity. We looked for a possible universal mechanism that might allow taller tree species to adjust stiffness without affecting xylem specific gravity and concluded that the evidence points to a decrease in cellulose microfibril angle in structural cell walls combined with possible increases in holocellulose percentage. The evidence is strongest for conifers. We also showed that tall conifers have the ability to adjust the distribution of xylem moisture to maximize conduction while minimizing column load.

CONCLUSIONS: Our research reveals that taller trees have developed internal stem adjustments to minimize diameter increase while attaining ever-greater heights, thus enabling these taller species to reduce energy expended on biomass accumulation while gaining greater access to solar radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app