Add like
Add dislike
Add to saved papers

The impact of canister geometry on chemical biological radiological and nuclear filter performance: A computational fluid dynamics analysis.

Steady-state axisymmetric simulations using the Reynolds-Averaged Navier-Stokes equations have been carried out in order to optimize the performance of a Chemical, Biological, Radiological and Nuclear (CBRN) canister filter for its use in a powered air-purifying respirator (PAPR). Alterations have been made to the shape of the canister, the spacing of the rear wall of the canister with regard to the carbon filter, and the bracketing between (i) the particulate filter and the carbon bed and (ii) the carbon bed and the canister wall. The pressure drop across the canister and the residence time distribution at the rear of the carbon bed have been analysed in detail based on an extensive parametric analysis involving the aforementioned variations. It has been demonstrated that the non-uniform porosity profile of the carbon bed resulted in alternating regions of high and low velocity close to the canister wall, providing a possible route for breakthrough. Designs, which included a bracket at the rear of the carbon bed, blocked this route and consequently had a longer minimum mean residence time than those, which did not. It has also been shown that the spacing between the carbon bed and the canister rear wall had a large impact on both residence time and pressure drop. In cases where the carbon backed directly onto the canister rear wall flow in the axial direction from the outside wall towards the canister axis resulted in far greater pressure drop and a reduction in minimum mean residence time within the carbon bed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app