Add like
Add dislike
Add to saved papers

Improvement of Glucose Metabolism Following Long-Term Taurocholic Acid Gavage in a Diabetic Rat Model.

BACKGROUND Bile acids (BAs) are signaling molecules that participate in maintaining glucose homeostasis. Acute enteral infusion of BAs potently reduces the glycemic response to glucose, associated with an increase of incretin hormones. However, the effect of long-term supplementation of BAs on glucose metabolism has not been fully investigated. MATERIAL AND METHODS Thirty diabetic rats were assigned to a control group (n=10), a low TCA group (L-TCA group, n=10), and a high TCA group (H-TCA group, n=10). Rats in the control group were fed a regular high-fat diet (HFD), while rats in the L-TCA group and H-TCA group were fed a TCA (taurocholic acid)-mixed HFD with the concentrations of 0.05% and 0.3%, respectively, to control the intake of HFD and TCA. Energy intake, body weight, serum insulin, glucose tolerance, insulin sensitivity, GLP-1, and total serum BAs were measured at week 2 and week 12. RESULTS At week 2 there were no significant differences in body weight, daily energy intake, glucose tolerance, serum insulin, insulin sensitivity, GLP-1, or fasting total serum BAs between the 3 groups. At week 12, fasting blood glucose and intragastric glucose tolerance were better in the H-TCA group, with significantly greater insulin and GLP-1 secretion and better insulin sensitivity; no significant differences in body weight, energy intake, or total fasting serum BAs were observed. CONCLUSIONS Long-term supplementation with small doses of TCA was demonstrated to improve glucose metabolism in a diabetic rat model and may be a potential target for diabetes control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app