Add like
Add dislike
Add to saved papers

Scalable, High-Performance Printed InO x Transistors Enabled by Ultraviolet-Annealed Printed High- k AlO x Gate Dielectrics.

Inorganic transparent metal oxides represent one of the highest performing material systems for thin-film flexible electronics. Integrating these materials with low-temperature processing and printing technologies could fuel the next generation of ubiquitous transparent devices. In this work, we investigate the integration of UV-annealing with inkjet printing, demonstrating how UV-annealing of high- k AlO x dielectrics facilitates the fabrication of high-performance InO x transistors at low processing temperatures and improves bias-stress stability of devices with all-printed dielectrics, semiconductors, and source/drain electrodes. First, the influence of UV-annealing on printed metal-insulator-metal capacitors is explored, illustrating the effects of UV-annealing on the electrical, chemical, and morphological properties of the printed gate dielectrics. Utilizing these dielectrics, printed InO x transistors were fabricated which achieved exceptional performance at low process temperatures (<250 °C), with linear mobility μlin ≈ 12 ± 1.6 cm2 /V s, subthreshold slope <150 mV/dec, Ion / Ioff > 107 , and minimal hysteresis (<50 mV). Importantly, detailed characterization of these UV-annealed printed devices reveals enhanced operational stability, with reduced threshold voltage ( Vt ) shifts and more stable on-current. This work highlights a unique, synergistic interaction between low-temperature-processed high- k dielectrics and printed metal oxide semiconductors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app