Add like
Add dislike
Add to saved papers

Structure-Property of Lithium-Sulfur Nanoparticles via Molecular Dynamics Simulation.

Lithium-sulfur (Li-S) batteries offer higher energy densities than most reported lithium-ion batteries. However, our understanding of Li-S battery is still largely unknown at the level of the nanoscale. The structural properties of Li-S materials were investigated via molecular dynamics (MD) simulations using the ReaxFF force field. Several Li-S nanoparticles with different Li/S composition ratios (2:1 and 2:8) and various structures are studied. Our MD simulations show that among the four structures we constructed for Li2 S8 nanoparticles, the core-shell structure is the most thermodynamically stable one during the charging (delithiation) process. In contrast to bulk crystal Li2 S, we find the presence of mixed lithium sulfide and polysulfide species are common features for these Li-S (Li2 S, Li2 S8 ) nanoparticles. The complex distribution of these sulfide and polysulfide speciation are dictated by both stoichiometry and local atomic structures in the nanoparticle. These findings will provide insight into further development of functionalized lithium-sulfur cathodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app