Add like
Add dislike
Add to saved papers

Enhanced Production of High-Value Cyclopropane Fatty Acid in Yeast Engineered for Increased Lipid Synthesis and Accumulation.

Biotechnology Journal 2018 October 9
The unique strained ring structure in cyclopropane fatty acids (CFA) conveys oxidative stability and lubricity to lipids. These attributes are highly valuable for industrial applications such as cosmetics and specialist lubrication but there is currently no commercial source of the lipid. Here, built on recently engineered strains of Saccharomyces cerevisiae, the authors have developed an efficient strategy for CFA production. Expression of the Escherichia coli cyclopropane fatty acid synthetase (Ec.CFAS) in the engineered yeast resulted in formation of cis-9,10-methylene-hexadecanoic and octadecanoic acids in both the phospholipid (PL) and triacylglycerol (TAG) fractions. CFA concentration in TAG of engineered yeast is 12 mg CFA g-1 DCW (fourfold above the strain expressing CFAS only). The yield of CFA increases from 13.2 to 68.3 mg L-1 , the highest reported in yeast, using a two-stage bioprocess strategy that separated cell growth from the lipid modification stage. Strategies for further improvement of this valuable lipid are proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app