Add like
Add dislike
Add to saved papers

Metabolic covariance networks combining graph theory measuring aberrant topological patterns in mesial temporal lobe epilepsy.

OBJECTIVE: We aimed to study the networks' mechanism of metabolic covariance networks in mesial temporal lobe epilepsy (mTLE), through examining the brain value of fluorine-18-fluorodeoxyglucose positron emission tomography (18 F-FDG-PET).

METHODS: 18 F-FDG-PET images from 16 patients with mTLE were analyzed using local and global metabolic covariance network (MCN) approaches, including whole metabolic pattern analysis (WMPA), hippocampus-based (h-) MCN, whole brain (w-) MCN, and edge-based connectivity analysis (EBCA).

RESULTS: WMPA showed a typical ipsilateral hypometabolism and contralateral hypermetabolism pattern to epileptic zones in mTLE. h-MCN revealed decreased hippocampus-based synchronization in contralateral regions. w-MCN exhibited a disrupted metabolic network with globally increased small-world properties and regionally decreased nodal metrics in the ipsilateral hemisphere. Hippocampus (h)-EBCA and whole brain EBCA (w-EBCA) both detected a reduced-connectivity dominated metabolic covariant network. Moreover, the reduced interhemisphere connectivity seemingly played a major role in the aberrant epileptic topological pattern.

CONCLUSION: From a metabolic point of view, we demonstrated the damaging effects with reduced contralateral intranetwork metrics properties and the compensatory effects in contralateral intranetworks with increased network properties. However, the import role of significant reduced interhemisphere connection has rarely been reported in other mTLE studies. Taken together, 18 F-FDG-PET MCN analysis provides new evidence that the mTLE is a system neurological disorder with disrupted networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app