Add like
Add dislike
Add to saved papers

Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages.

Silicon (Si) plays important roles in alleviating heavy metal stress in rice plants. Here we investigated the physiological response of rice at different growth stages under the silicon-induced mitigation of cadmium (Cd) and zinc (Zn) toxicity. Si treatment increased the dry weight of shoots and roots and reduced the Cd and Zn concentrations in roots, stems, leaves and grains. Under the stress of exposure to Cd and Zn, photosynthetic parameters including the chlorophyll content and chlorophyll fluorescence decreased, while the membrane permeability and malondialdehyde (MDA) increased. Catalase (CAT) and peroxidase (POD) activities increased under heavy metals stress, but superoxide dismutase (SOD) activities decreased. The magnitude of these Cd- and Zn-induced changes was mitigated by Si-addition at different growth stages. The available Cd concentration increased in the soil but significantly decreased in the shoots, which suggested that Si treatment prevents Cd accumulation through internal mechanisms by limiting Cd2+ uptake by the roots. Overall, the phenomena of Si-mediated alleviation of Cd and excess Zn toxicity in two rice cultivars could be due to the limitation of metal uptake and transport, resulting in an improvement in cell membrane integrity, photosynthetic performance and anti-oxidative enzyme activities after Si treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app