Add like
Add dislike
Add to saved papers

Mutated Thyroid Hormone Transporter OATP1C1 Associates with Severe Brain Hypometabolism and Juvenile Neurodegeneration.

BACKGROUND: Thyroid hormones (TH) are essential for brain development and function. The TH transporters monocarboxylate transporter 8 (MCT8) and organic anion transporter1 C1 (OATP1C1) facilitate the transport of TH across the blood-brain barrier and into glia and neuronal cells in the brain. Loss of MCT8 function causes Allan-Herndon-Dudley syndrome (AHDS, OMIM 300523) characterized by severe intellectual and motor disability due to cerebral hypothyroidism. Here, the first patient with loss of OATP1C1 function is described. The patient is a 15.5-year-old girl with normal development in the first year of life, who gradually developed dementia with spasticity and intolerance to cold. Brain imaging demonstrated gray and white matter degeneration and severe glucose hypometabolism.

METHODS: Exome sequencing of the patient and parents was performed to identify the disease-causing mutation, and the effect of the mutation was studied through a panel of in vitro experiments, including thyroxine uptake studies, immunoblotting, and immunocytochemistry. Furthermore, the clinical effects of treatment with the triiodothyronine analogue triiodothyroacetic acid (Triac) are described.

RESULTS: Exome sequencing identified a homozygous missense mutation in OATP1C1, changing the highly conserved aspartic acid 252 to asparagine (D252N). In vitro, the mutated OATP1C1 displays impaired plasma membrane localization and decreased cellular thyroxine uptake. After treatment with Triac, the clinical condition improved in several domains.

CONCLUSIONS: This is the first report of human OATP1C1 deficiency compatible with brain-specific hypothyroidism and neurodegeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app