Add like
Add dislike
Add to saved papers

PBMDR: A particle swarm optimization-based multifactor dimensionality reduction for the detection of multilocus interactions.

Studies on multilocus interactions have mainly investigated the associations between genetic variations from the related genes and histopathological tumor characteristics in patients. However, currently, the identification and characterization of susceptibility genes for complex diseases remain a great challenge for geneticists. In this study, a particle swarm optimization (PSO)-based multifactor dimensionality reduction (MDR) approach was proposed, denoted by PBMDR. MDR was used to detect multilocus interactions based on the PSO algorithm. A test data set was simulated from the genotype frequencies of 26 SNPs from eight breast-cancer-related gene. In simulated disease models, we demonstrated that PBMDR outperforms existing global optimization algorithms in terms of its ability to explore and power to detect specific SNP-genotype combinations. In addition, the PBMDR algorithm was compared with other algorithms, including PSO and chaotic PSOs, and the results revealed that the PBMDR algorithm yielded higher accuracy and chi-square values than other algorithms did.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app