Add like
Add dislike
Add to saved papers

A similarity-based method for prediction of drug side effects with heterogeneous information.

Drugs can produce intended therapeutic effects to treat different diseases. However, they may also cause side effects at the same time. For an approved drug, it is best to detect all side effects it can produce. Otherwise, it may bring great risks for pharmaceuticals companies as well as be harmful to human body. It is urgent to design quick and reliable identification methods to detect the side effects for a given drug. In this study, a binary classification model was proposed to predict drug side effects. Different from most previous methods, our model termed the pair of drug and side effect as a sample and convert the original problem to a binary classification problem. Based on the similarity idea, each pair was represented by five features, each of which was derived from a type of drug property. The strong machine learning algorithm, random forest, was adopted as the prediction engine. The ten-fold cross-validation on five datasets with different negative samples indicated that the proposed model yielded a good performance of Matthews correlation coefficient around 0.550 and AUC around 0.8492. In addition, we also analyzed the contribution of each drug property for construction of the model. The results indicated that drug similarity in fingerprint was most related to the prediction of drug side effects and all drug properties gave less or more contributions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app