Add like
Add dislike
Add to saved papers

Observation of Spin-Valley-Coupling-Induced Large Spin-Lifetime Anisotropy in Bilayer Graphene.

Physical Review Letters 2018 September 22
We report the first observation of a large spin-lifetime anisotropy in bilayer graphene (BLG) fully encapsulated between hexagonal boron nitride. We characterize the out-of-plane (τ_{⊥}) and in-plane (τ_{∥}) spin lifetimes by oblique Hanle spin precession. At 75 K and the charge neutrality point (CNP), we observe a strong anisotropy of τ_{⊥}/τ_{∥}=8±2. This value is comparable to graphene-transition-metal-dichalcogenide heterostructures, whereas our high-quality BLG provides with τ_{⊥} up to 9 ns, a spin lifetime more than 2 orders of magnitude larger. The anisotropy decreases to 3.5±1 at a carrier density of n=6×10^{11}  cm^{-2}. Temperature-dependent measurements show above 75 K a decrease of τ_{⊥}/τ_{∥} with increasing temperature, reaching the isotropic case close to room temperature. We explain our findings with electric-field-induced spin-valley coupling arising from the small intrinsic spin-orbit fields in BLG of 12  μeV at the CNP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app