Add like
Add dislike
Add to saved papers

Constructing Universal Ionic Sieves via Alignment of Two-Dimensional Covalent Organic Frameworks (COFs).

Angewandte Chemie 2018 October 9
The shuttle effect of electrode materials always leads to capacity loss and poor cycle life of batteries. Two-dimensional (2D) covalent organic frameworks (COFs) with uniform and controllable nanopores provide a promising strategy for fabricating ionic sieves to inhibit the shuttle effect. However, the insoluble nature of COFs made it difficult to fabricate compact and ordered membranes of COFs. Herein, we report a novel method for facilely anisotropic ordering of 2D COFs via depositing COFs onto graphene. The resulted double-layer membranes acting as ionic sieves impressively inhibit the shuttle effect and exhibit versatility to both organic sodium-ion batteries and Li-S batteries, leading to high cyclability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app