Add like
Add dislike
Add to saved papers

A quantitative structure-property relationship (QSPR) for estimating solid material-air partition coefficients of organic compounds.

Indoor Air 2018 October 9
The material-air partition coefficient (Kma ) is a key parameter to estimate the release of chemicals incorporated in solid materials and resulting human exposures. Existing correlations to estimate Kma are applicable for a limited number of chemical-material combinations without considering the effect of temperature. The present study develops a quantitative structure-property relationship (QSPR) to predict Kma for a large number of chemical-material combinations. We compiled a dataset of 991 measured Kma for 179 chemicals in 22 consolidated material types. A multiple linear regression model predicts Kma as a function of chemical's Koa , enthalpy of vaporization (∆Hv ), temperature, and material type. The model shows good fitting of the experimental dataset with adjusted R2 of 0.93 and has been verified by internal and external validations to be robust, stable and has good predicting ability ( R ext 2  > 0.78). A generic QSPR is also developed to predict Kma from chemical properties and temperature only (adjusted R2  = 0.84), without the need to assign a specific material type. These QSPRs provide correlation methods to estimate Kma for a wide range of organic chemicals and materials, which will facilitate high-throughput estimates of human exposures for chemicals in solid materials, particularly building materials and furniture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app