JOURNAL ARTICLE
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Assessment of Resistance to Tyrosine Kinase Inhibitors by an Interrogation of Signal Transduction Pathways by Antibody Arrays.

Cancer patients with an aberrant regulation of the protein phosphorylation networks are often treated with the tyrosine kinase inhibitors. Response rates approaching 85% are common. Unfortunately, patients often become refractory to the treatment by altering their signal transduction pathways. An implementation of the expression profiling with microarrays can identify the overall mRNA-level changes, and proteomics can identify the overall changes in protein levels or can identify the proteins involved, but the activity of the signal transduction pathways can only be established by interrogating post-translational modifications of the proteins. As a result, the ability to identify whether a drug treatment is successful or whether resistance arose, or the ability to characterize any alterations in the signaling pathways, is an important clinical challenge. Here, we provide a detailed explanation of antibody arrays as a tool which can identify system-wide alterations in various post-translational modifications (e.g., phosphorylation). One of the advantages of using antibody arrays includes their accessibility (an array does not require either an expert in proteomics or costly equipment) and speed. The availability of arrays targeting a combination of post-translational modifications is the primary limitation. In addition, unbiased approaches (phosphoproteomics) may be more suitable for the novel discovery, whereas antibody arrays are ideal for the most widely characterized targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app