Add like
Add dislike
Add to saved papers

A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture.

Biotechnology Progress 2018 October 8
Perfusion flow is one of the essential elements and advantages of organ-on-a-chip technology. For example, microfluidics have enabled implementation of perfusion flow and recapitulation of fluidic environment for vascular endothelial cells. The most prevalent method of implementing flow in a chip is to use a pump, which requires elaborate manipulation and complex connections, and accompanies a large amount of dead volume. Previously we devised a gravity-induced flow system which does not require tubing connections, but this method results in bidirectional flow to enable recirculation, which is somewhat different from physiological blood flow. Here, we have developed a novel microfluidic chip that enables gravity-induced, unidirectional flow by using a bypass channel with geometry different from the main channel. Human umbilical vein endothelial cells were cultured inside the chip and the effect of flow direction was examined. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app