Add like
Add dislike
Add to saved papers

The chromatin remodeling protein BRG1 regulates APAP-induced liver injury by modulating CYP3A11 transcription in hepatocyte.

Acetaminophen (APAP) overdose represents the most frequent cause of acute liver failure. The underlying epigenetic mechanism is not fully understood. In the present study we investigated the mechanism whereby the chromatin remodeling protein brahma related gene 1 (Brg1) regulates APAP induced liver injury in mice. We report that hepatocyte-specific deletion of Brg1 attenuated APAP induced liver injury in mice as evidenced by reduced plasma ALT and AST levels, decreased liver necrosis, amelioration of GSH depletion, and prolonged survival. Brg1 regulated APAP-induced liver injury likely by stimulating the transcription of Cyp3a11, a key cytochrome enzyme involved in APAP metabolism. Immunoprecipitation coupled with DNA affinity microarray identified hepatocyte nuclear factor 4 (HNF4) as a novel binding partner for Brg1. HNF4 recruited Brg1 to the Cyp3a11 promoter and formed a complex with Brg1 to trans-activate Cyp3a11. In contrast, BRG1 deficiency attenuated HNF4 binding to the Cyp3a11 promoter and dampened Cyp3a11 transcription. Therefore, our data suggest that Brg1 might play an essential role mediating APAP induced liver injury in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app