Add like
Add dislike
Add to saved papers

Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine.

3-Phenoxybenzoic acid (3-PBA) is a human urinary metabolite of many pyrethroid insecticides and can be used as a biomarker to monitor human exposure to these pesticides. A rapid and sensitive direct competitive fluorescence enzyme immunoassay (dc-FEIA) for detecting 3-PBA on the basis of a nanobody (Nb)-alkaline phosphatase (AP) fusion protein was developed. The anti-3-PBA Nb-AP fusion protein was expressed and purified. The 50% inhibitory concentration (IC50 ) and linear range of dc-FEIA were 0.082 and 0.015-0.447 ng/mL, respectively, with a detection limit of 0.011 ng/mL. The IC50 of dc-FEIA was improved by nearly ten times compared with those of one-step and three-step direct competitive enzyme-linked immunosorbent assay (dc-ELISA). Spiked urine samples were detected by both dc-FEIA and liquid chromatography-mass spectrometry (LC-MS), and the results showed good consistency between the two analysis methods, indicating the reliability of dc-FEIA based on the Nb-AP fusion protein for detecting 3-PBA in urine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app