Add like
Add dislike
Add to saved papers

Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells.

Substrate stiffness and topography are two powerful means by which mesenchymal stem cells (MSCs) activities can be modulated. The effects of substrate stiffness on the MSCs mechanical properties were investigated previously, however, the role of substrate topography in this regard is not yet well understood. Moreover, in vessel wall, these two physical cues act simultaneously to regulate cellular function, hence it is important to investigate their cooperative effects on cellular activity. Herein, we investigated the combined effects of substrate stiffness, substrate topography and culture time on the mechanical behavior of MSCs. The MSCs were cultured on the stiff and soft substrates with or without micro-grooved topography for 10 days and their viscoelastic properties and smooth muscle (SM) gene expression were investigated on days 2, 6 and 10. In general, substrate topography significantly interacted with substrate stiffness as well as culture time in the modulation of cell viscoelastic behavior and SM gene expression. The micro-grooved, stiff substrates resulted in the maximum cell stiffness and gene expression of α-actin and h1-calponin, and these values were detected to be minimum in the smooth, soft substrates. The findings can be helpful in the mechano-regulation of MSCs for vascular tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app