Add like
Add dislike
Add to saved papers

Exposure to triclosan changes the expression of microRNA in male juvenile zebrafish (Danio rerio).

Chemosphere 2018 September 30
Triclosan (TCS) is a broad-spectrum antibacterial agent which is widely used in various personal care products and cosmetics. It has been found that TCS affects endocrine, immune, nervous, reproductive, and developmental system. Although microRNAs (miRNAs) act a pivotal part in lots of metabolic activities, whether and how they are related to the process of TCS-induced toxicity is unknown. In the present study, TCS induced changes in miRNAs and target gene expression in male zebrafish (Danio rerio) brain, and the potential mechanism was studied. Male juvenile zebrafish were exposed to 0 and 68 μg/L TCS for 42 d. miRNA was isolated from the brain pool of the zebrafish and the expression profiles of 255 known zebrafish miRNAs were analysed by using Affymetrix miRNA 4.0 microarrays. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assay the expression of 5 differentially expressed miRNAs in the microarray data and some related-genes in brains. The GO term analysis revealed that miRNAs significantly affected by TCS exposure were mainly involved in translation, transcription, DNA-templated, protein transport, and motor neuron axon guidance biological process. Pathway analysis showed that target genes of 5 differentially expressed miRNAs prominently participate in basal transcription factors, purine metabolism, and ribosome biogenesis in eukaryotes. In addition, key genes in purine metabolism pathway and oxidative stress related-genes were significantly changed. These findings offer novel insight into the mechanisms of epigenetic regulation in TCS-induced toxicity in male zebrafish, and distinguish novel miRNA biomarkers for exposure to TCS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app