Add like
Add dislike
Add to saved papers

Mineralogy and buffer identity effects on RDX kinetics and intermediates during reaction with natural and synthetic magnetite.

Chemosphere 2018 December
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to undergo reduction mediated by ferrous iron in the presence of minerals, including magnetite. Idealized laboratory conditions may not provide representative reaction kinetics or pathways compared to field conditions. The effects of magnetite mineral morphology, the aquifer material matrix, the presence of aqueous Fe(II), and the buffer identity on RDX reduction kinetics and intermediate formation are investigated in this work. Reactions in bicarbonate buffer were substantially slower than those performed in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer, and the presence of quartz and clays in magnetite-containing aquifer material resulted in slower reaction kinetics and production of additional iron oxide phases. Buffer identity also changed the rate controlling step and reaction product distribution. Conditions as close to those expected in field systems are necessary to evaluate the reaction rates and pathways of RDX in reduced groundwater systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app