Add like
Add dislike
Add to saved papers

Study on dynamic adsorption of p-nitrophenol by multi-walled carbon nanotubes dispersed cyclodextrin.

In this paper, the modified multi-walled carbon nanotubes were prepared by β-cyclodextrin denoted as β-CD-MWNTs. The structure and morphology of β-CD-MWNTs was characterized by TEM and the dynamic adsorption of p-nitrophenol on β-CD-MWNTs was studied by the Thomas model. Some affecting factors of dynamic adsorption and the adsorbent regeneration process such as the sewage concentration, the amount of absorbent in column, including the type of reagent, solid-liquid ratio, regeneration time, and regeneration times were investigated and optimized. The results indicated that the p-nitrophenol removal rate could reach 84% under stuffing 2 g β-CD-MWNTs. The curves of p-nitrophenol's dynamic adsorption conformed to the Thomas model. Moreover, the adsorption capacity of regenerated β-CD-MWNTs was similar to the fresh β-CD-MWNT column. The optimal conditions of regenerations of β-CD-MWNTs were shown as follows: the type of reagent is anhydrous ethanol, the solid-liquid ratio is 200:40 (mg/mL) and the regeneration time is 120 min.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app