JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and CRISPR/Cas9 Genome Editing.

Recent advances in genome-wide sequencing technologies have provided researchers with unprecedented opportunities to discover the genomic structures of gene regulatory units in living organisms. In particular, the integration of ChIP-seq, RNA-seq, and DNase-seq techniques has facilitated the mapping of a new class of regulatory elements. These elements, called super-enhancers, can regulate cell-type-specific gene sets and even fine-tune gene expression regulation in response to external stimuli, and have become a hot topic in genome biology. However, there is scant genetic evidence demonstrating their unique biological relevance and the mechanisms underlying these biological functions. In this review, we describe a robust genome-wide strategy for mapping cell-type-specific enhancers or super-enhancers in the mammary genome. In this strategy, genome-wide screening of active enhancer clusters that are co-occupied by mammary-enriched transcription factors, co-factors, and active enhancer marks is used to identify bona fide mammary tissue-specific super-enhancers. The in vivo function of these super-enhancers and their associated regulatory elements may then be investigated in various ways using the advanced CRISPR/Cas9 genome-editing technology. Based on our experience targeting various mammary genomic sites using CRISPR/Cas9 in mice, we comprehensively discuss the molecular consequences of the different targeting methods, such as the number of gRNAs and the dependence on their simultaneous or sequential injections. We also mention the considerations that are essential for obtaining accurate results and shed light on recent progress that has been made in developing modified CRISPR/Cas9 genome-editing techniques. In the future, the coupling of advanced genome-wide sequencing and genome-editing technologies could provide new insights into the complex genetic regulatory networks involved in mammary-gland development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app