Add like
Add dislike
Add to saved papers

A new pharmacokinetic model for 90 Y-ibritumomab tiuxetan based on 3-dimensional dosimetry.

Scientific Reports 2018 October 6
Monoclonal antibodies (mAbs) are key components in several therapies for cancer and inflammatory diseases but current knowledge of their clinical pharmacokinetics and distribution in human tissues remains incomplete. Consequently, optimal dosing and scheduling in clinics are affected. With sequential radiolabeled mAb-based imaging, radiation dosing in tissues/organs can be calculated to provide a better assessment of mAb concentrations in tissues. This is the first pharmacokinetic model of 90 Y-Ibritumomab tiuxetan (90 Y-IT) in humans to be described, based on three-dimensional (3D) dosimetry using single-photon emission computed-tomography coupled with computed-tomography. 19 patients with follicular lymphoma were treated initially with 90 Y-IT in the FIZZ trial. Based on a compartmental approach individualising the vascular compartment within studied organs, this study proposes a reliable pharmacokinetic (PK) five-compartment model replacing the currently used two-compartment model and constitutes a new direction for further research. This model provides exchange constants between the different tissues, Area Under the Curve of 111 In-IT in blood (AUC) and Mean Residence Time (MRT) that have not been reported so far for IT. Finally, the elimination process appears to occur in a compartment other than the liver or the spleen and suggests the metabolism of mAbs may take place mainly on the vascular compartment level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app