Add like
Add dislike
Add to saved papers

Variability of crossing phase in older people with Parkinson's disease is dependent of obstacle height.

Scientific Reports 2018 October 6
Our aim was investigating variability in spatiotemporal parameters and kinetics of obstacle avoidance steps of different height obstacles in people with Parkinson's disease (PD) and healthy older people. Twenty-eight participants have included (15 PD - stage disease: 2.1 ± 0.4 pts) and 13 healthy older people (control group). Each subject performed 10 trials of the following tasks: low obstacle, intermediate obstacle and high obstacle. The presentation order was randomized by block for each condition and participant. The spatiotemporal parameters was collected by GAITRite. An optoelectronic system (Optotrak Northern Digital Inc.) with 100 Hz of frequency was used to collect obstacle parameters. The kinect parameters (propulsion impulse and braking impulse) were acquire through two force plates (AccuGait), with a frequency of acquisition 200 Hz. Intersteps variability was calculated throughout mean values, standard deviation and coefficient of variation of two obstacle avoidance steps for each trial. PD group presented greater variability than control group on vertical and horizontal distances to the obstacle. Obstacle height did not change kinect's parameters for both groups. The combination of task complexity (obstacle height) and disease impairments (gait alteration, loss of balance, etc) contributing for greater variability of Parkinson's group. Besides, low obstacle and high obstacle seem to exacerbate variability of distance between obstacle and foot.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app