Add like
Add dislike
Add to saved papers

Double quantum filtered 23 Na MRI with magic angle excitation of human skeletal muscle in the presence of B 0 and B 1 inhomogeneities.

NMR in Biomedicine 2018 October 6
Double quantum filtered 23 Na MRI with magic angle excitation (DQF-MA) can be used to selectively detect sodium ions located within anisotropic structures such as muscle fibers. It might therefore be a promising tool to analyze the microscopic environment of sodium ions, for example in the context of osmotically neutral sodium retention. However, DQF-MA imaging is challenging due to various signal dependences, on both measurement parameters and external influences. The aim of this work was to examine how B0 in combination with B1 inhomogeneities alter the DQF-MA signal intensity. We showed that, in the presence of B0 inhomogeneities, flip angle schemes with only one 54.7° pulse can be favorable compared with the classical 90°-54.7°-54.7° scheme. DQF-MA images of the human lower leg were acquired at B0  = 3 T with a nominal spatial resolution of 12 × 12 × 36 mm3 within an acquisition time of TAcq  < 10 min, and compared with spin density weighted (DW), as well as triple quantum filtration (TQF) 23 Na images. We found mean normalized signal-to-noise ratios of TQF/DW = 13.7 ± 2.3% (tibialis anterior), 11.9 ± 2.3% (soleus) and 11.4 ± 2.2% (gastrocnemius medialis), as well as DQF-MA/DW = 4.7 ± 1.1% (tibialis anterior), 3.3 ± 0.73% (soleus) and 3.4 ± 0.6% (gastrocnemius medialis). These ratios might serve as additional measures in future clinical studies of sodium retention within human skeletal muscle. However, the influence of B0 and B1 inhomogeneities should be considered when interpreting DQF-MA images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app