Journal Article
Review
Add like
Add dislike
Add to saved papers

Functional and phenotypic heterogeneity of Th17 cells in health and disease.

BACKGROUND: Th17 cells have nonredundant roles in maintaining immunity, particularly at mucosal surfaces. These roles are achieved principally through the production of cytokines and the recruitment of other immune cells to maintain the integrity of mucosal barriers and prevent the dissemination of microorganisms. Th17 cells are heterogeneous and exhibit a considerable degree of plasticity. This allows these cells to respond to changing environmental challenges. However, Th17 cells also play pro-inflammatory roles in chronic autoimmune diseases. The trigger(s) that initiate these Th17 responses in chronic autoimmune diseases remain unclear.

DESIGN: In this report, we provide an overview of studies involving animal models, patient data, genome wide association studies and clinical trials targeting IL-17 for treatment of patients to gain a better understanding of the pathogenic roles of Th17 cells play in a range of autoimmune diseases.

RESULTS: The report sheds light on likely triggers that initiate or perpetuate Th17 responses that promote chronic inflammation and autoimmunity. The divergent effects of tumour necrosis factor alpha blockade on Th17 cells in patients, is explored. Furthermore, we highlight the role of Th17 cells in inducing autoreactive B cells, leading to autoantibody production. Pathogenic bacterial species can change Th17 cell phenotype and responses. These findings provide insights into how Th17 cells could be induced to promoting autoimmune disease pathogenesis.

CONCLUSION: This article provides an overview of the distinct roles Th17 cells play in maintaining immunity at mucosal surfaces and in skin mucosa and how their functional flexibility could be linked with chronic inflammation in autoimmune rheumatic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app