Add like
Add dislike
Add to saved papers

Ultraviolet-Assisted Direct Ink Write to Additively Manufacture All-Aromatic Polyimides.

All-aromatic polyimides have degradation temperatures above 500 °C, excellent mechanical strength, and chemical resistance, and are thus ideal polymers for high-temperature applications. However, their all-aromatic structure impedes additive manufacturing (AM) because of the lack of melt processability and insolubility in organic solvents. Recently, our group demonstrated the design of UV-curable polyamic acids (PAA), the precursor of polyimides, to enable their processing using vat photopolymerization AM. This work leverages our previous synthetic strategy and combines it with the high solution viscosity of nonisolated PAA to yield suitable UV-curable inks for UV-assisted direct ink write (UV-DIW). UV-DIW enabled the design of complex three-dimensional structures comprising of thin features, such as truss structures. Dynamic mechanical analysis of printed and imidized specimens confirmed the thermomechanical properties typical of all-aromatic polyimides, showing a storage modulus above 1 GPa up to 400 °C. Processing polyimide precursors via DIW presents opportunity for multimaterial printing of multifunctional components, such as three-dimensional integrated electronics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app