Add like
Add dislike
Add to saved papers

In Vitro Hydrodynamic Evaluation of a Scaffold for Heart Valve Tissue Engineering.

Artificial Organs 2018 October 6
Although prosthetic heart valves have saved many lives, the search for a living substitute continues with the aid of tissue engineering. Much progress has been made so far, but the translation of this technology to clinical reality remains a challenge, especially due to the structural complexity of heart valves and the harsh environment they are in. In a joint effort, researchers from Federal University of ABC and Institute Dante Pazzanese of Cardiology have conceived a new bioresorbable scaffold for heart valve tissue engineering (HVTE), whose hydrodynamic performance was first assessed and described in this work. The scaffold was studied at the mitral position of a left heart simulator from Escola Politécnica of the University of São Paulo, under 60 bpm and with no cell seeding. In this condition, two-dimensional particle image velocimetry was performed to investigate the flow during diastolic and systolic phases. The results indicate that the scaffold can withstand the required intraventricular pressures for a simulated normal physiologic condition in a bioreactor. Furthermore, the averaged (N = 150) velocity vector maps showed a smooth and well-distributed flow during diastole and qualitatively demonstrated no-significant regurgitation at systole.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app