Add like
Add dislike
Add to saved papers

Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean.

Physiologia Plantarum 2018 October 6
To elucidate molecular mechanisms controlling differential growth responses to root colonization by arbuscular mycorrhizal (AM) fungi varying in colonization and cooperative behavior, a pot experiment was carried out using two soybean genotypes and three AM inocula. The results showed that inoculation by cooperative Rhizophagus irregularis (Ri) or less-cooperative Glomus aggregatum with high AM colonization (Ga-H) significantly promoted plant growth compared with inoculation by Glomus aggregatum with low AM colonization (Ga-L). A comparative RNA sequencing analysis of the root transcriptomes showed that fatty acid synthesis pathway was significantly enriched in all three AM inoculation roots. However, sugar metabolism and transport were significantly enriched only in Ri and Ga-H inoculation, which was consistent with positive growth responses in these two inoculation treatments. Accordingly, the expression levels of the key genes related to sugar metabolism and transport were also up-regulated in Ri and Ga-H roots compared with Ga-L roots. Of them, two SWEET transporter genes, GmSWEET6 (Glyma.04G198600) and GmSWEET15 (Glyma.06G166800), and one invertase (Glyma.17G227900) gene were exclusively induced only in Ri and Ga-H roots. Promoter analyses in transgenic soybean roots further demonstrated that GUS driven by the GmSWEET6 promoter was highly expressed in arbuscule-containing cortical cells. Additionally, Ri and Ga-H inoculation increased the contents of sucrose, glucose and fructose in both shoots and roots compared to those of Ga-L and NM. These results imply that positive mycorrhizal growth responses in plants might mostly be due to the stimulation of photosynthate metabolism and transport by AM fungal inoculum with high colonization capabilities. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app