Add like
Add dislike
Add to saved papers

Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract.

To address the growing challenges from drug-resistant microbes and tumor incidence, approaches are being undertaken to phytosynthesize metal nanoparticles, particularly silver nanoparticles, to get remedial measure. In this study, an attempt has been made to utilize a major biowaste product, pomegranate fruit peel (Punica granatum), to synthesize silver nanoparticles. The silver nanoparticles (AgNPs) were synthesized using the aqueous extract of pomegranate peel. The formation of synthesized AgNPs was confirmed through UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) as well as through the change of the colorless aqueous solution to a dark brown solution. Using UV-Vis spectroscopy, the dark brown solution showed a Plasmon resonance band peak at 378 nm in UV-Vis spectroscopy after reacting for 24, 48, and 72 h. The XRD report revealed that the AgNPs had a cubic structure. The TEM and SEM report showed the nanoparticles were equally distributed in the solution, with a spherical shape and size ranging from 20 to 40 nm and with an average particle size of 26.95 nm. EDX imaging also confirmed the presence of AgNPs. The synthesized AgNPs were found to exhibit good antimicrobial effects on Gram-negative and Gram-positive bacteria, particularly the pathogens Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27584), Proteus vulgaris (ATCC 8427), Salmonella typhi (ATCC 14028), Staphylococcus aureus (ATCC 29213), Staphylococcus epidermidis (MTCC 3615), and Klebsiella pneumonia. The cytotoxic effects of AgNPs were also tested against a colon cancer cell line (RKO: ATCC® CRL-2577™), and it was observed that the viabilities were 56% and 61% on days 3 and 5, respectively, with exposure to 12.5 μg of AgNPs. This simple, economic, and eco-friendly method suggests that the AgNPs biosynthesized using pomegranate peel extract may be a novel, potent solution for the development of a drug for colon cancer that also has antibacterial activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app