Add like
Add dislike
Add to saved papers

Ultrasonically formation of supramolecular based ultrasound energy assisted solidification of floating organic drop microextraction for preconcentration of methadone in human plasma and saliva samples prior to gas chromatography-mass spectrometry.

In this work, an ultrasonic-assisted supramolecular based on solidification of floating organic drop microextraction (UA-SM-SFO-ME) was developed as a green method for preconcentration of methadone prior to gas chromatography-mass spectrometry (GC-MS). The supramolecular solvent aggregates containing reverse micelles of 1-dodecanol in tetrahydrofuran (THF) were formed by ultrasonication that subsequently dispersed in the sample solution. Ultrasonic waves caused the fast formation of supramolecular solvent aggregates. In this work, ultrasonication was used in two phases: First phase, the formation of reverse micelles and the second phase, the dispersion of supramolecular solvent in the sample solution. Actually, ultrasonication was basic of this presented work. In order to provide the highest extraction efficiency, the influence of various parameters on the method performance (supramolecular solvent type and volume, disperser solvent condition, pH, extraction time and salt concentration) was investigated. Based on the obtained optimum conditions, the limits of detection (LODs) and the limits of quantitation (LOQs) were obtained 0.5-1.2 µg L-1 and 1.2-2.5 µg L-1 with preconcentration factors in the range of 182-191, in water and biological samples, respectively. Subsequently, the method was assessed for preconcentration of the methadone in human plasma and saliva samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app