Add like
Add dislike
Add to saved papers

Rational discovery of a SOD1 tryptophan oxidation inhibitor with therapeutic potential for amyotrophic lateral sclerosis.

Formation of Cu, Zn superoxide dismutase 1 (SOD1) protein inclusions within motor neurons is one of the principal characteristics of SOD1-related amyotrophic lateral sclerosis (ALS). A hypothesis as to the nature of SOD1 aggregation implicates oxidative damage to a solvent-exposed tryptophan as causative. Here, we chart discovery of a phenanthridinone based compound (Lig9) from the NCI Diversity Set III by rational methods by in silico screening and crystallographic validation. The crystal structure of the complex with SOD1, refined to 2.5 Å, revealed that Lig9 binds the SOD1 β-barrel in the β-strand 2 and 3 region which is known to scaffold SOD1 fibrillation. The phenanthridinone moiety makes a substantial π - π interaction with Trp32 of SOD1. The compound possesses a significant binding affinity for SOD1 and inhibits oxidation of Trp32; a critical residue for SOD1 aggregation. Thus, Lig9 is a good candidate from which to develop a new library of SOD1 aggregation inhibitors through protection of Trp32 oxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app