Add like
Add dislike
Add to saved papers

Kinetics and isotherm modeling of azoxystrobin and imidacloprid retention in biomixtures.

The paper reports the kinetics and adsorption isotherm modeling for imidacloprid (IMIDA) and azoxystrobin (AZOXY) in rice straw (RS)/corn cob (CC) and peat (P)/compost (C) based biomixtures. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intraparticle diffusion models were used to describe the kinetics. The adsorption data were subjected to the Langmuir and the Freundlich isotherms. Results (r2 Adj values) suggested that the modified Elovich model was the best suited to explain the kinetics of IMIDA sorption while different models explained AZOXY sorption kinetics in different biomixtures (PFO in RS + C and RS + P; PSO in CC + P and Elovich in CC + C). Biomixtures varied in their capacity to adsorb both pesticides and the adsorption coefficient (Kd ) values were 116.8-369.24 (AZOXY) and 24.2-293.4 (IMIDA). The Freundlich isotherm better explained the sorption of both pesticides. Comparison analysis of linear and nonlinear method for estimating the Freundlich adsorption constants was made. In general, r2 Adj values were higher for the nonlinear fit (AZOXY = 0.938-0.982; IMIDA = 0.91-0.970) than the linear fit (AZOXY = 0.886-0.993; IMIDA = 0.870-0.974) suggesting that the nonlinear Freundlich equation better explained the sorption. The rice straw-based biomixtures performed better in adsorbing both the pesticides and can be used in bio-purification systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app