Add like
Add dislike
Add to saved papers

Molecular Self-Assembly of Copolymer from Renewable Phenols: New Class of Antimicrobial Ointment Base.

Ointments are highly viscous forms intended for external applications either medicated or non-medicated means. Formulation of ointment depends upon the base ingredients to measure the viscosity difference. Several limitations of ointment bases has been encountered timely as agglomeration, oil phase ingredients can form lumps, poor dispersion, poor drug delivery efficiency, make stained, immiscible, and difficult to wash off. Therefore, it is necessary to make a new type of ointment bases that can overcome those limitations. This review summarizes a new type of ointment base preparation from the copolymer of renewable phenolic derivatives. The nanohydrogel preparation from these copolymers are especially effortless and highly efficient in drug delivery, exhibited versatile biological activities such as antioxidant, anti-inflammatory and wound healing in addition to antimicrobial property. Molecular self-assembly mechanisms have been addressed for nanogel formulation. The strategy makes a significant value in health-care application and be supposed to come marketed soon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app