Add like
Add dislike
Add to saved papers

Surface Fouling of Ultrananocrystalline Diamond Microelectrodes during Dopamine Detection: Improving Lifetime via Electrochemical Cycling.

In this work, we report the electrochemical response of a boron-doped ultrananocrystalline diamond (BDUNCD) microelectrode during long-term dopamine (DA) detection. Specifically, changes to its electrochemical activity and electroactive area due to DA byproducts and surface oxidation are studied via scanning electron microscopy, energy dispersive spectroscopy, electrochemical impedance spectroscopy, and silver deposition imaging (SDI). The fouling studies with amperometry (AM) and fast scan cyclic voltammetry (FSCV) methods suggest that the microelectrodes are heavily fouled due to poor DA-dopamine- o-quinone cyclization rates followed by a combination of polymer formation and major changes in their surface chemistry. SDI data confirms the presence of the insulating polymer with sparsely distributed tiny electroactive regions. This resulted in severely distorted DA signals and a 90% loss in signal starting as early as 3 h for AM and a 56% loss at 6.5 h for FSCV. This underscores the need for cleaning of the fouled microelectrodes if they have to be used long-term. Out of the three in vivo suitable electrochemical cycling cleaning waveforms investigated, the standard waveform (-0.4 V to +1.0 V) provides the best cleaned surface with a fully retained voltammogram shape, no hysteresis, no DA signal loss (a 90 ± 0.72 nA increase), and the smallest charge transfer resistance value of 0.4 ± 0.02 MΩ even after 6.5 h of monitoring. Most importantly, this is the same waveform that is widely used for in vivo detection with carbon fiber microelectrodes. Future work to test these microelectrodes for more than 24 h of DA detection is anticipated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app